A Review on Friction Stir Welding of Steel

نویسنده

  • A. Pradeep
چکیده

–Friction stir welding is a solid state welding technology used for welding low melting point metals, such as Al, Mg and its alloys. Later welding was conducted on dissimilar metals which also produced a better defect free joint. Tool design and welding parameters contributes a major role for producing a better weld. Material flow and friction heat are the factors that the internal factor for the formation of weld. At present the research on Friction stir welding on steel is concentrated because of the major use of steels in industries rather than other metals. This paper gives the review of basic concepts of Friction Stir Welding on tool design, mode of metal transfer and process parameters. Further the extensive application of Friction Stir welding on steel is discussed in this study. The mechanical and metallurgical properties on the steel welded material are also focussed. Keywords––Steels, Tool design, Metal transfer, Microstructure, Tensile strength.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental study of formability of friction stir welded ultra-thin sheets of IF steel

In this paper, the experimental investigation of formability of friction stir welded ultra-thin sheets of IF steel is investigated experimentally. First, the sheets are joined by friction stir welding process based on the tests determined according to the Taguchi design of experiments. The investigated parameters in the welding process are as tool rotational and traverse speeds. Then, the tailo...

متن کامل

Investigating the Effect of Optimum Welding Parameters on the Microstructural and Mechanical Properties of St37 Steel and 316L Stainless Steel Welded by the Friction Stir Welding Process

In this research, St37 and 316L steel sheets were welded using friction stir welding (FSW) process and effective parameters such as the rotational speed, linear speed of the tool, pin diameter, and their appropriate values were studied. The microstructure, hardness, and strength of the different welding regions were investigated. It was observed that in the stir zone (SZ), a mechanical operatio...

متن کامل

Microstructural evolution of 304 austenitic stainless steel in friction stir welding process

Friction stir welding (FSW) was conducted on AISI 304 austenitic stainless steel plate with 2 mm thickness. The FSW was performed at a welding and rotational speeds of 50 mm/min and 400 rpm, respectively. Microstructure observations by the optical microscopy showed that a severe grain refinement occurred in the stir zone (SZ). Electron backscattered diffraction analysis (EBSD) results indicated...

متن کامل

Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel

Three-dimensional nonlinear thermal and thermo-mechanical numerical simulations are conducted for the friction stir welding (FSW) of 304L stainless steel. The finite element analysis code—WELDSIM, developed by the authors specifically for welding simulation, was used. Two welding cases with tool rotational speeds of 300 and 500 rpm are analyzed. The objective is to study the variation of transi...

متن کامل

Microstructural evolution of 304 austenitic stainless steel in friction stir welding process

Friction stir welding (FSW) was conducted on AISI 304 austenitic stainless steel plate with 2 mm thickness. The FSW was performed at a welding and rotational speeds of 50 mm/min and 400 rpm, respectively. Microstructure observations by the optical microscopy showed that a severe grain refinement occurred in the stir zone (SZ). Electron backscattered diffraction analysis (EBSD) results indicated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012